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Abstract: - Katsevich formula is currently a hot topic for cone-beam computed tomography (CBCT). The filter 
in the formula can be computed by a regular discrete Hilbert transform (DHT). A configurable single precision 
floating-point (SPFP) DHT processor is proposed for accelerating the calculation of filter in Katsevich formula. 
The configurable processor is of memory based architecture with one pipelined butterfly processing engine (PE) 
and supports variable point sizes from 8 to 1024. The DHT processor is controlled by the address generator. 
According to the point size, the address generator yields one memory address pair per clock cycle to keep the 
processor accessing memories successively. The DHT is calculated easily via complex multiplications in the 
frequency domain. Two fast Fourier transforms (FFT) are required in the entire process. The radix-2 FFT 
algorithm with decimation-in-frequency (DIF) decomposition is utilized in the design to construct an efficiently 
signal flow graph (SFG) for DHT calculation. Arithmetic calculations, in the last FFT iteration, complex 
multiplications and the first IFFT iteration are replaced with conjugation and swapping operations, so two 
iterations are saved in the DHT SFG. Data are loaded and unloaded simultaneously after one frame data 
calculation is completed. The symmetric property of twiddle factors is utilized to decrease half size of the read-
only memory (ROM). Truncation is used in the design to reduce data path width. The proposed DHT processor 
is written in Verilog HDL, so it is easy for ASIC implementation. Compared with previous works, the 
performance analysis shows that the proposed DHT processor has minimum clock latency. 
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1 Introduction 
Katsevich formula is developed in [1][2][3] for fully 
3-D CBCT with a helical scanning path. This 
formula is theoretically exact before discretization, 
and it may be implemented via a filtered-back 
projection type algorithm. Therefore, it has the 
potential for both high accuracy and fast 
implementation. The filter step is the bottleneck of 
Katsevich formula because it can be seemed as a 
regular 1-D DHT. 

The DHT was developed by Kak, Cizek, and 
Oppenheim [4][5][6] for applying digital signal 
processing (DSP) techniques to analytic signal, 
minimum phase sequence etc. DHT is a very 
important technique in signal and network theory, 
and have been of practical importance in various 
DSP systems. Band pass sampling, analytic signal, 
minimum phase networks and much of spectral 
analysis theory are based on DHT [7]. 

The most widely used method for computing the 
DHT is through the use of the FFT. Since the early 
paper by Cooley and Tukey [8], a large number of 

FFT algorithms have been developed such as radix-
2 algorithms, Winograd algorithm (WFTA) [9], 
prime factor algorithms (FPA) [10], and fast Hartley 
transform (FHT) [11]. These methods use different 
transforms to compute the DHT, their basic method 
of computing the DHT is that they all use the 
transform domain for computing the DHT. There 
are other methods, such as the filter method [12] and 
the systolic arrays [13]. This method comes directly 
from the DHT definition. This method is the direct 
implementation of the convolution operation on the 
input sequence with the impulse response of the 
Hilbert transformer [6]. The filter method requires 
considerable memory in cases of higher accurate 
requirement. The systolic arrays method computes 
the constant parameter matrix beforehand, and then 
multiplies the input data by this matrix. 

For hardware implementation, architectures of 
DHT processor based on FFT algorithms can be 
generally grouped into pipelined and memory based 
architecture styles. Various FFT processors have 
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been proposed in [14]-[23]. The DHT processors 
have two popular design styles. One is single-path 
delay feedback (SDF) pipelined architecture [14] 
[15], and the other is multi-path delay commutator 
(MDC) pipelined architecture [16]. Pipelined 
architectures are good at memory requirement, as 
well as advantage to low power design, but they are 
usually used to design a fixed point size DHT 
processor. Memory based architectures are widely 
used to design configurable DHT processors due to 
its constant PE and easy memory address 
management. Memory based architectures usually 
include one or more PEs, and the hardware cost and 
the power consumption are both lower than other 
architectures. 

A configurable SPFP DHT processor is proposed 
to accelerate the calculation of filter in Katsevich 
algorithm. The processor is of memory based 
architecture with one pipelined butterfly PE and 
supports variable point sizes from 8 to 1024. The 
DHT processor is controlled by the address 
generator. According to the point size, the address 
generator yields one memory address pair per clock 
cycle to keep the processor accessing memories 
successively. The DHT is calculated easily via 
complex multiplications in the frequency domain. 
Two FFTs are required in the entire process. The 
radix-2 FFT algorithm with DIF decomposition is 
utilized in the design to construct an efficiently SFG 
for DHT calculation. Arithmetic calculations, in the 
last FFT iteration, complex multiplications and the 
first IFFT iteration are replaced with conjugation 
and swapping operations, so two iterations are saved 
in the DHT SFG. Data are loaded and unloaded 
simultaneously after one frame data calculation is 
completed. The symmetric property of twiddle 
factors is utilized to decrease half size of the ROM. 
Truncation is used in the design to reduce data path 
width. The proposed DHT processor is written in 
Verilog HDL, so it is easy for ASIC implementation. 
Compared with previous works, the performance 
analysis shows that the proposed DHT processor has 
minimum clock latency. 

The rest of this paper is organized as follows. In 
the next section we review the DHT definition, and 
then discuss its related computational methods and 
algorithms. IEEE standard for SPFP arithmetic is 
also introduced briefly. In section III a novel DHT 
SFG and the architecture of the proposed DHT 
processor is illustrated. Then the pipelined butterfly 
PE, SPFP multipliers, SPFP adders, and memory 
address generator are presented in detail in this 
section. Performance evaluation and comparison of 

various DHT architectures is presented in section IV. 
Finally, concluding remarks are given in Section V. 
 
 

2 DHT Algorithms and IEEE 754 
Standard 
This section gives a brief review on definitions and 
computational methods of DHT based on FFT/IFFT. 
IEEE 754 standard for SPFP is also discussed here. 
 
 
2.1 The Discrete Hilbert Transform 
The Hilbert transform of signal ( )x t is defined as 
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where ˆ( )x t is the Hilbert transform result [6]. 
The Hilbert transform in the frequency domain is 

given by 
ˆ ( ) sgn( ) ( )                        (2)X j X     

Where ( )X  is the Fourier transform of ( )x t and 
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The DHT is developed as an exact equivalent of 
the Hilbert transform for discrete signals and is 
defined as 

ˆ( ) ( ) ( )                        (4)x n x n h n   

Where ( )h n is the impulse of DHT given by 
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The DHT can be computed via FFT as shown 
below 

ˆ( ) IFFT( sgn( ) ( ))                (6)x n j k X k   
Where X(k) = FFT(x(n)) and 
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It is evident that the DHT can be calculated 
easily by FFT in three steps. This method 
transforms the input sequence to the frequency 
domain, then computes the Hilbert transform in the 
frequency domain and finally performs an IFFT 
operation to get the required Hilbert-transformed 
sequence. 
 
 
2.2 The Fast Fourier Transform 
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The discrete Fourier transform (DFT) is the most 
straightforward mathematical method for finding the 
frequency content ( )X k of a sequence ( )x n in the 

time domain. The N-point DFT and Inverse DFT 
(IDFT) are defined as: 
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The twiddle factor exp( 2 )NW j N  denotes 

the N-point primitive root of unity. The IDFT can be 
rewritten as: 
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(8) and (10) have the same twiddle factors and 
the similar mathematical expression, so DFT and 
IDFT can be performed by same hardware. 2N  
complex multiplications need to calculate in (8) or 
(10), so a straightforward hardware implementation 
of the DFT algorithm is obviously impractical. 
Therefore, the FFT was developed to efficiently 
speed up DFT computation time and significantly 
reduce the amount of multiplications. 

FFT was proposed by Cooley and Tukey [8] in 
1965. FFT is an efficient approach for reducing the 
computational complexity of DFT. FFT has many 
flexible algorithms. Generally, FFT treats input 
sequence by using decimation-in-frequency (DIF) or 
decimation-in-time (DIT) decomposition to build a 
regular SFG. Radix-2 DIF FFT is chosen in this 
paper because we analyze the input sequence in 
natural ordering in most cases. 
 
 
2.3 IEEE Standard for Binary Single 
Precision Floating-Point Arithmetic 
An IEEE binary SPFP number [24] is a 32-bit word 
with 1 bit for sign “s”, 8 bits for exponent “e” with 
127 bias and 23 bits for mantissa “m” with true 
binary notation. A normal SPFP number is 
represented in 

( 1) 2 (1 ),     (0 255)    (11)s en m e        

Denormalized SPFP numbers are too small. In 
most practical calculation they do not contribute to 
the final result, so we treat denormalized numbers as 
zero, with a sign “s” taken from them. Some special 
SPFP numbers are depicted as follows. 
1. 255, 0e m  , not a number (NAN). 
2. 255, 0e m  , infinity depending on “s”. 

3. 0, 0e m  , zero depending on “s”. 
4. 0, 0e m  , denormalized operands. 

SPFP arithmetic operation has some rounding 
modes. Truncation and convergent rounding are two 
mostly used modes for keep the result precision. In 
hardware implementation, truncation is the easiest 
method for hardware implementation. The pipelined 
butterfly PE of the proposed DHT processor use 
truncation to reduce data path width. 
 
 

3 The Proposed DHT SFG and 
associated Architecture 
 
 
3.1 The Proposed DHT SFG 
Bit reversed sorting is a complicated operation in 
radix-2 FFT algorithm. FFT and IFFT are calculated 
one time in respective in the DHT computation. A 
popular DHT SFG is depicted in Fig. 1. In this 
figure, the input and the output of the complex 
multiplication module are both bit reversed order, so 
no bit reversed sorting is used. The main 
disadvantage is that Fig. 1 uses both DIF and DIT 
decomposition. DIF PE and DIT PE have different 
arithmetic operation sequence, so the hardware 
implementation using Fig. 1 may wastes hardware 
resource. 

As an example, a novel 16-point DHT SFG is 
proposed in Fig. 2. FFT and IFFT in this figure are 
both using radix-2 FFT with DIF decomposition. 
Input and output of the complex multiplication 
module are both bit reversed order. FFT and IFFT in 
Fig. 2 share one pipelined DIF butterfly PE while 
avoiding bit reversed sorting in DHT computation. 
Another advantage in Fig. 2 is that the input and 
output sequence are both in natural order. 
 
 
3.2 Optimization of Complex Multiplications 
in the Frequency Domain 
Complex multiplication in the frequency domain is 
expressed in (6) and (7). It is evident that the DHT 
can be calculated easily in the frequency domain as 
multiplications with +j, -j or 0. Actually, complex 
multiplication is implemented by some easily 
circuits without multipliers in this paper. 

Fig.1. 16-point DHT SFG by a DIF FFT and a DIT 
IFFT 

WSEAS TRANSACTIONS on COMMUNICATIONS Wang Xu, Zhang Yan, Wang Fei, Ding Shunying

E-ISSN: 2224-2864 397 Issue 11, Volume 11, November 2012



Decrease iterations in Fig. 2 can decrease the 
DHT computation latency significantly. In the 
figure, the last FFT iteration and complex 
multiplications is calculated without multiplications. 
We merge the two iterations into the first IFFT 
iteration. This skill is shown in Fig. 3. Assume that 
the inputs of one butterfly in the last FFT iteration 
are (ar, ai) and (br, bi), so the butterfly result is 
(ar+br, ai+bi) and (ar-br, ai-bi). Complex 
multiplications in the frequency domain are replaced 
with swapping and conjugation operations. The 
result of this step is (ai+bi, -ar-br) and (bi-ai, ar-br). 
Two numbers are conjugated to (ai+bi, ar+br) and 
(bi-ai, br-ar). Then the butterly in the first IFFT 
iteration treats (ai+bi, ar+br) and (bi-ai, br-ar) as 
the inputs and this butterfly results are (2bi, 2br) and 
(2ai, 2ar). The results can write as (bi, br) and (ai, 
ar) also. A series of complicated operations 
changing (ar, ai) and (br, bi) to (bi, br) and (ai, ar) 
are optimized to swapping operations easily. The 
optimization of complex multiplications in the 
frequency domain decreases two iterations in the 
DHT SFG shown in Fig. 2. We call this 
optimization as swapping operation. If the DHT 
point size is 2n , in other words the DHT SFG has n 

iterations. The proposed processor performs n-2 
iterations after the DHT SFG optimization. 

The last IFFT iteration doesn’t contain any 
complex multiplication. The DHT results can be 
stored in memory using bypass circuits. 
 
 
3.3 The Proposed DHT Architecture 
The architecture of the proposed DHT processor is 
shown in Fig. 4. It mainly employs one single port 
ROM, two random access memories (RAM), three 
crossbar switches, one pipelined butterfly PE and 
one memory address controller. Two RAMs are 
used to read and write data and ROM is used for 
twiddle factors accessing. The width of two RAMs 
and ROM are both 64-bit so as to access the real and 
image part of complex data simultaneously. The 
RAM is dual-port, one port is used to read data and 
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another is used to write data. This method avoids 
memory access conflict when the pipelined butterfly 
PE working in one stage iteration of the DHT SFG. 
The controller includes an address generator and a 
parity module. The parity of element X is defined as 
zero if the number of ones in the binary 
representation of X is even and one otherwise. “din” 
is the data load port and “dout” is the data unload 
port. The strobe signal “start” notices the processor 
to work after memory initiation. The point size of 
DHT computation is “2^pow” determined by the 
signal “pow”. The address generator makes an 
address pair ( , )s t per clock cycle. The signal 
“parity” generated by the parity module controls 
memories accessing, three crossbar switches and the 
multiplexer connected to unload port. The memory 
initial rule is that the data is loaded to RAM0 with 
“parity” is zero and to RAM1 with “parity” is one. 
The signal “parity” also means swapping data 
before and after the butterfly PE working. Because 
the data read from RAM0 and RAM1 may be have a 
reversed order comparing to the DHT SFG in Fig. 2. 
Data read from memory is delivered to the butterfly 
PE every clock cycle to keep the pipeline working 
in one stage iteration in the DHT SFG. After 
computation finished, result in two memories is 
unloaded in the “parity” control. 
 
 
3.4 Architecture of the Memory Address 
Controller 
The DHT processor supports variable point sizes. 
The internal memory address controller configures 
the processor according to the point size N. The 
controller mainly includes a memory address 
generator and a parity module. The memory address 
generator makes 2N different address pairs in one 
stage iteration according to the point size N. The 
parity module controls all crossbar switches. 

Cohen [25] proposed a simple way to control 
memory address. Let an address pair ( , )s t represent a 
DIF butterfly PE operation. 
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X t X s X t W
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The value of the address pair in the ith butterfly 
in the jth iteration is defined as 
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Where N is the point size and ( , )nrotate i j is the 
value of i cycling rotated right, by j bits, within n 
bits, e.g., 4 (1,1) 8rotate  and 4 (9,2) 6rotate  . The 

parity of i is defined as zero if the number of ones in 
the binary representation of i is even and one 
otherwise. Pease [26] proved that s and t in the 
address pair have different parity. 

The architecture of memory controller is shown 
in Fig. 5. The controller mainly includes three 
counters, two cycling shifters and one parity module. 
Continuous numbers from 0 to 2 1N  are generated 
by the counter “Cnt0”. Continuous numbers from 

2 1N  to 1N  are generated by the counter “Cnt1”. 
Two numbers generated by “Cnt0” and “Cnt1” are 
cycling rotated right according to the value of 

TABLE 1 
16-POINT DHT MEMORY ADDRESS PAIRS 

Iterations Memory address pairs ( , )s t  

FFT 0 (0, 8), (1, 9), (2, 10), (3, 11), (4, 12), (5, 
13), (6, 14), (7, 15) 

FFT 1 (0, 4), (8, 12), (1, 5), (9, 13), (2, 6), (10, 
14), (3, 7), (11, 15) 

FFT 2 (0, 2), (4, 6), (8, 10), (12, 14), (1, 3), (5, 
7), (9, 11), (13, 15) 

FFT 3/ 
IFFT 0 

(0, 1), (2, 3), (4, 5), (6, 7), (8, 9), (10, 
11), (12, 13), (14, 15) 

IFFT 1 (0, 2), (4, 6), (8, 10), (12, 14), (1, 3), (5, 
7), (9, 11), (13, 15) 

IFFT 2 (0, 4), (8, 12), (1, 5), (9, 13), (2, 6), (10, 
14), (3, 7), (11, 15) 

IFFT 3 (0, 8), (1, 9), (2, 10), (3, 11), (4, 12), (5, 
13), (6, 14), (7, 15) 

 

S
w

itch2

Fig.5. The architecture of memory address generator 
and parity module 
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counter “Cnt2”, then address pair ( , )s t is valid. This 
address pair will be swapped by crossbar switch 2 if 
the signal “parity” is one. After swapping operation, 
the address pair is sent to RAM0 and RAM1 in 
respective. Memory address pairs of a 16-point 
DHT are show in Table 1. As an example, the 
address generator makes an address pair (8,12) in 
FFT iteration 1 where the parity of “s” is one, so the 
address pair is swapped to (12,8), and then address 
12 is send to RAM0 and address 8 is send to RAM1. 
The memory address generator uses one clock cycle 
to set initial values and one clock cycle to make a 
rotated address pair. The memory address generator 
costs two clock cycles before the DHT computation. 
 
 
3.5 Twiddle Factors Symmetry 
Twiddle factors have a symmetric property. In the 
second quadrant, twiddle factor multiplications with 
a complex number can be written as: 

( 4)( ) ( ), 4 2   (16)k k N
N NW a jb W b ja N k N      
Twiddle factors is located in the first and the 

second quadrant. Given the (16), twiddle factors in 
the second quadrant can be obtained by a 
combination of twiddle factors in the first quadrant. 
In other words, arbitrary twiddle factors used in 
DHT can utilize this operation type to derive the 
wanted value, thus can significantly shorten the size 
of ROM used to store the twiddle factors. Based on 
the symmetric property, the ROM size for twiddle 
factors will be reduced half. 
 
 
3.6 The Pipelined butterfly PE architecture 
We design a pipelined butterfly PE to improve the 
performance of the DHT processor. The VLSI 
architecture of the butterfly PE shown in Fig. 6 is 
composed of six adders, four multipliers, three XOR 
gates, eight multiplexers and one crossbar switch. In 
the architecture, {ar, ai} and {br, bi} are data read 

from RAM0 and RAM1. {ar’, ai’} and {br’, bi’} 
are data written to RAM0 and RAM1. {cosa, sina} 
are data read from twiddle factors ROM. The signal 
“dht_zero” is active means selecting 0 when the 
address pair is (0, 2)N . The signal “dht_en” is 
active in the first IFFT iteration. The signal 
“sym_en” is active when twiddle factors are in the 
second quadrant. The signal “wr_conj” is active 
when writing data into memories in the last IFFT 
iteration. 

Let an N-point DHT be processed by the 
pipelined butterfly PE. The DHT SFG shown in the 
Fig. 2 is divided into three steps in Fig. 3. FFT is the 
first step. In Fig. 5, signal “dht_zero”, “dht_en” and 
“wr_conj” are all disable, so the butterfly PE 
becomes a radix-2 DIF butterfly. Swapping is the 
second step, which includes the last FFT iteration, 
complex multiplication and the first IFFT iteration. 
In this step, complex multiplication is active, so 
signal “dht_en” is enabled. The signal “dht_zero” is 
active also when the address pair is (0, 2)N in the 
first IFFT iteration. This signal sets the complex 
multiplication results to zero. The third step is 
executing other IFFT iterations. The signal wr_conj 
is active when writing data in the last IFFT iteration. 
 
 
3.7 The SPFP Adder Architecture 
Floating-point addition is a fundamental component 
of DSP processors and systems. Various algorithms 
and design approaches [27-33] have been proposed 
to increase the performance of floating-point adder. 

A five stage pipelined SPFP adder is designed in 
[28] which has an efficient pipeline division. But the 
clock rate of this adder is low because of its long 
critical path. The critical path in the processor is 
located in the SPFP multiplier, the five stage 
pipelined SPFP adder is not suited. We proposed a 
seven stage pipelined SPFP adder architecture 
shown in Fig. 7. Assume that a SPFP addition starts 
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Fig.6. The pipelined butterfly PE architecture 
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in clock cycle i. Then two inputs are loaded from 
memory and check whether they are denormalized. 
Denormalized inputs will be replaced with zero. The 
exponents are subtracted from one another to get the 
absolute difference and identify the larger exponent. 
The fraction parts of two inputs are also changed to 
2’s complement code representation. In cycle 1i  , 
the mantissa with smaller exponent is right-shifted 
to ensure that two inputs have the same exponential. 
The mantissa with smaller exponent is extended by 
3 bits to be used later for rounding. In cycle 2i  , 
two mantissas are added using a 2’s complement 
adder. In cycle 3i  , the sum of two mantissas is 
changed to true code representation. In cycle 4i  , 
detecting the leading number of zeros before the 
first 1 in the sum, this step is done by the module 
known as the leading-one detector (LOD). Using 
this value, the result is left-shifted by a left shifter in 
cycle 5i  . Normalization and truncation is finished 
at cycle 6i  . The latency of the proposed pipelined 
SPFP adder is 7addT  . 
 
 

3.8 The SPFP Multiplier Architecture 
The pipelined architecture of the SPFP multiplier is 
shown in Fig. 8. The first step, not shown in the 
figure, is preprocessing. This step includes replacing 
denormalized operands with zero, then setting the 
result to zero if one of the two operands is zero or to 
infinity if one of the two operands is infinity and 
another is nonzero. Next, we get the exponent result 
by adding the exponent of the two operands and 
then subtracting the bias from their sum. The 
mantissa’s product is performed by a fixed point 
multiplier at the same time. We exclusive or (XOR) 
the sign of the two operands to get the sign result of 
the product. 

The fixed point multiplier is responsible for 
multiplying the mantissas and placing the decimal 
point in the product. Serial, booth and carry save are 
general multiplier architectures in hardware design. 
Serial multiplier has a high clock rate, but it has a 
large circuit area and long latency for computation. 
4-bit booth multiplier saves half of the clock cycles 
compared with serial multiplier, but the latency is 
not the minimal. The array multiplier has a 
compacted structure and a very efficient layout. But 
it is hard to determine the propagation delay 
straightforward due to the array organization. Three 
24x24 bit multiplier architectures are implemented 
and their performance comparison is listed in Table 

Fig.7. The architecture of SPFP adder 
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Fig.8. The architecture of SPFP multiplier 
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architecture. 
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II. We chose carry save architecture for designing 
24x24 bit multiplier because it has a moderate 
latency with comparatively small area. The carry 
bits are passed diagonally downwards in carry save 
multiplier. Partial products are made by anding the 
inputs together and passing them to the appropriate 
adder. 

The number of adders (HA and FA) in each stage 
is equal to the mantissa’s length minus one. For 
example, a 24x4 carry save multiplier is shown in 
Fig. 9 and it has four stages: The first stage consists 
of three HAs. The second and the third stages 
consist of three FAs respectively. The last stage 
consists of one HA and two FAs. The latency of the 
proposed pipelined SPFP multiplier is 7mulT  . 
 
 

4 Implementation and Performance 
Analysis 
 

 
4.1 Implementation 

The number of clock cycles by itself is not an 
accurate measure of performance of the system, 
since the clock rates may vary considerably. So an 
implementation is carried out to verify the 
performance of the system. 

The circuits are modelled using Verilog HDL. 
Synthesis uses Xilinx ISE 13.1. The proposed DHT 
processor is implemented in Xilinx XC5VLX50T 
with speed grade -2. The design doesn’t include any 
Xilinx DSP slices. The pipeline technique is used in 
the DHT processor in order to decrease latency, 

keep the processor working at a higher clock rate, 
and increase the processor’s throughput. The 
memory address bus width is 16, so the maximum 
point size the proposed DHT processor supports is 
1024. 
 
 
4.2 Comparison 
In Table 3, Some DSP processors are compared 
with the proposed one. The hardware in [33] has the 
minimal latency, but this architecture has poor clock 
frequency and memory utilization. The architecture 
includes four memories, and their depth equals to 
the DHT point size. The architecture in [34] uses 
one true dual port RAM with depth equals to the 
DHT point size. One port of the RAM is used for 
reading and another for writing, so the latency of 
one time iteration of DHT equals to the DHT point 
size. In [35] the PE is not working in pipelined 
mode, so the latency is longer than our work. In our 
work, The latency of pipelined floating-point adder 
and multiplier, in our design, are 7addT  and 

7mulT  . The latency of the pipelined butterfly PE is 

2 21add mulT T  . The address generator needs 2 
clock cycles to make an address pair before a new 
iteration in DHT SFG. When sampling length is 
1024, the proposed DHT SFG has 19 iterations after 
optimization. In one stage iteration, all data read to 
the SPFP PE requires 512 clock cycles. The last 
IFFT iteration has no multiplications. So the latency 
in our proposed DHT processor 
is (21 2 512) 19 10151mul addT T      . In Table 3, 
our work has the minimal latency for DHT 
computation with point size equals to 1024. 
 
 

5 Conclusion 
A configurable SPFP DHT processor is proposed to 
accelerate the calculation of filter in Katsevich 
algorithm. The processor is of memory based 
architecture with one pipelined butterfly PE and 
supports variable point sizes from 8 to 1024. The 
DHT processor is controlled by the address 

TABLE 2 
PERFORMANCE COMPARISON OF DIFFERENT 

MULTIPLIER ARCHITECTURES 
Designs Clock rate 

(MHz) 
Latency LUTs REGs

Serial 367.834 26 1213 627 
4-bit booth 348.372 14 910 524 
Carry save 334.316 8 867 476 
 

TABLE 3 
PERFORMANCE COMPARISON OF DIFFERENT MULTIPLIER ARCHITECTURES 

Designs Point 
sizes 

Clock 
rate 
(MHz)

FFT 
latency 

FFT 
time 
(us) 

DHT 
latency

Discrete
HT 
time (us)

REGs LUTs DSPs FPGA 

[33] FFT 1024 150 5220 34.8 10752 70.2 - - - XC2V1000-6 
[34] Altera 1024 185 10630 57.45 21261 114.92 - - - Altera 
[35] Xilinx 1024 374 9427 25.20 18855 50.414 1987 2028 6 XC5VLX50T-2
Our work 1024 335 5336 15.92 10151 30.30 5368 10118 0 XC5VLX50T-2
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generator. According to the point size, the address 
generator yields one memory address pair per clock 
cycle to keep the processor accessing memories 
successively. The DHT is calculated easily via 
complex multiplications in the frequency domain. 
Two FFTs are required in the entire process. The 
radix-2 FFT algorithm with DIF decomposition is 
utilized in the design to construct an efficiently SFG 
for DHT calculation. Arithmetic calculations, in the 
last FFT iteration, complex multiplications and the 
first IFFT iteration are replaced with conjugation 
and swapping operations, so two iterations are saved 
in the DHT SFG. Data are loaded and unloaded 
simultaneously after one frame data calculation is 
completed. The symmetric property of twiddle 
factors is utilized to decrease half size of the ROM. 
Truncation is used in the design to reduce data path 
width. The proposed DHT processor is written in 
Verilog HDL, so it is easy for ASIC implementation. 
Compared with previous works, the performance 
analysis shows that the proposed DHT processor has 
minimum clock latency. 
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