
A Configurable Floating-Point Discrete Hilbert Transform Processor
for Accelerating the Calculation of Filter in Katsevich Formula

WANG XU, ZHANG YAN, WANG FEI and DING SHUNYING

Department of Electronic and Information Engineering
Shenzhen Graduate School, Harbin Institute of Technology

Shenzhen, Guangdong 518055
CHINA

wangxugo@foxmail.com, ianzh@foxmail.com, http://www.hitsz.edu.cn

Abstract: - Katsevich formula is currently a hot topic for cone-beam computed tomography (CBCT). The filter
in the formula can be computed by a regular discrete Hilbert transform (DHT). A configurable single precision
floating-point (SPFP) DHT processor is proposed for accelerating the calculation of filter in Katsevich formula.
The configurable processor is of memory based architecture with one pipelined butterfly processing engine (PE)
and supports variable point sizes from 8 to 1024. The DHT processor is controlled by the address generator.
According to the point size, the address generator yields one memory address pair per clock cycle to keep the
processor accessing memories successively. The DHT is calculated easily via complex multiplications in the
frequency domain. Two fast Fourier transforms (FFT) are required in the entire process. The radix-2 FFT
algorithm with decimation-in-frequency (DIF) decomposition is utilized in the design to construct an efficiently
signal flow graph (SFG) for DHT calculation. Arithmetic calculations, in the last FFT iteration, complex
multiplications and the first IFFT iteration are replaced with conjugation and swapping operations, so two
iterations are saved in the DHT SFG. Data are loaded and unloaded simultaneously after one frame data
calculation is completed. The symmetric property of twiddle factors is utilized to decrease half size of the read-
only memory (ROM). Truncation is used in the design to reduce data path width. The proposed DHT processor
is written in Verilog HDL, so it is easy for ASIC implementation. Compared with previous works, the
performance analysis shows that the proposed DHT processor has minimum clock latency.

Key-Words: - discrete Hilbert transform, FFT, floating-point adder, floating-point multiplier, ASIC, VLSI

1 Introduction
Katsevich formula is developed in [1][2][3] for fully
3-D CBCT with a helical scanning path. This
formula is theoretically exact before discretization,
and it may be implemented via a filtered-back
projection type algorithm. Therefore, it has the
potential for both high accuracy and fast
implementation. The filter step is the bottleneck of
Katsevich formula because it can be seemed as a
regular 1-D DHT.

The DHT was developed by Kak, Cizek, and
Oppenheim [4][5][6] for applying digital signal
processing (DSP) techniques to analytic signal,
minimum phase sequence etc. DHT is a very
important technique in signal and network theory,
and have been of practical importance in various
DSP systems. Band pass sampling, analytic signal,
minimum phase networks and much of spectral
analysis theory are based on DHT [7].

The most widely used method for computing the
DHT is through the use of the FFT. Since the early
paper by Cooley and Tukey [8], a large number of

FFT algorithms have been developed such as radix-
2 algorithms, Winograd algorithm (WFTA) [9],
prime factor algorithms (FPA) [10], and fast Hartley
transform (FHT) [11]. These methods use different
transforms to compute the DHT, their basic method
of computing the DHT is that they all use the
transform domain for computing the DHT. There
are other methods, such as the filter method [12] and
the systolic arrays [13]. This method comes directly
from the DHT definition. This method is the direct
implementation of the convolution operation on the
input sequence with the impulse response of the
Hilbert transformer [6]. The filter method requires
considerable memory in cases of higher accurate
requirement. The systolic arrays method computes
the constant parameter matrix beforehand, and then
multiplies the input data by this matrix.

For hardware implementation, architectures of
DHT processor based on FFT algorithms can be
generally grouped into pipelined and memory based
architecture styles. Various FFT processors have

WSEAS TRANSACTIONS on COMMUNICATIONS Wang Xu, Zhang Yan, Wang Fei, Ding Shunying

E-ISSN: 2224-2864 395 Issue 11, Volume 11, November 2012

been proposed in [14]-[23]. The DHT processors
have two popular design styles. One is single-path
delay feedback (SDF) pipelined architecture [14]
[15], and the other is multi-path delay commutator
(MDC) pipelined architecture [16]. Pipelined
architectures are good at memory requirement, as
well as advantage to low power design, but they are
usually used to design a fixed point size DHT
processor. Memory based architectures are widely
used to design configurable DHT processors due to
its constant PE and easy memory address
management. Memory based architectures usually
include one or more PEs, and the hardware cost and
the power consumption are both lower than other
architectures.

A configurable SPFP DHT processor is proposed
to accelerate the calculation of filter in Katsevich
algorithm. The processor is of memory based
architecture with one pipelined butterfly PE and
supports variable point sizes from 8 to 1024. The
DHT processor is controlled by the address
generator. According to the point size, the address
generator yields one memory address pair per clock
cycle to keep the processor accessing memories
successively. The DHT is calculated easily via
complex multiplications in the frequency domain.
Two FFTs are required in the entire process. The
radix-2 FFT algorithm with DIF decomposition is
utilized in the design to construct an efficiently SFG
for DHT calculation. Arithmetic calculations, in the
last FFT iteration, complex multiplications and the
first IFFT iteration are replaced with conjugation
and swapping operations, so two iterations are saved
in the DHT SFG. Data are loaded and unloaded
simultaneously after one frame data calculation is
completed. The symmetric property of twiddle
factors is utilized to decrease half size of the ROM.
Truncation is used in the design to reduce data path
width. The proposed DHT processor is written in
Verilog HDL, so it is easy for ASIC implementation.
Compared with previous works, the performance
analysis shows that the proposed DHT processor has
minimum clock latency.

The rest of this paper is organized as follows. In
the next section we review the DHT definition, and
then discuss its related computational methods and
algorithms. IEEE standard for SPFP arithmetic is
also introduced briefly. In section III a novel DHT
SFG and the architecture of the proposed DHT
processor is illustrated. Then the pipelined butterfly
PE, SPFP multipliers, SPFP adders, and memory
address generator are presented in detail in this
section. Performance evaluation and comparison of

various DHT architectures is presented in section IV.
Finally, concluding remarks are given in Section V.

2 DHT Algorithms and IEEE 754
Standard
This section gives a brief review on definitions and
computational methods of DHT based on FFT/IFFT.
IEEE 754 standard for SPFP is also discussed here.

2.1 The Discrete Hilbert Transform
The Hilbert transform of signal ()x t is defined as

1 ()
ˆ()

1 () 1
() (1)

x
x t d

t
x t

d x t
t

 
 

 
  













  





where ˆ()x t is the Hilbert transform result [6].
The Hilbert transform in the frequency domain is

given by
ˆ () sgn() () (2)X j X   

Where ()X  is the Fourier transform of ()x t and

 0
sgn() (3)

 0

j
j

j





 

   

The DHT is developed as an exact equivalent of
the Hilbert transform for discrete signals and is
defined as

ˆ() () () (4)x n x n h n 

Where ()h n is the impulse of DHT given by

0 0
() (5)

(1 (1)) 0n

n
h n

n n


 

  

The DHT can be computed via FFT as shown
below

ˆ() IFFT(sgn() ()) (6)x n j k X k 
Where X(k) = FFT(x(n)) and

 1,2, , 2 1

sgn() 0 0, 2 (7)

 2 1, , 1

j k N

j k k N

j k N N

  
  
   





It is evident that the DHT can be calculated
easily by FFT in three steps. This method
transforms the input sequence to the frequency
domain, then computes the Hilbert transform in the
frequency domain and finally performs an IFFT
operation to get the required Hilbert-transformed
sequence.

2.2 The Fast Fourier Transform

WSEAS TRANSACTIONS on COMMUNICATIONS Wang Xu, Zhang Yan, Wang Fei, Ding Shunying

E-ISSN: 2224-2864 396 Issue 11, Volume 11, November 2012

The discrete Fourier transform (DFT) is the most
straightforward mathematical method for finding the
frequency content ()X k of a sequence ()x n in the

time domain. The N-point DFT and Inverse DFT
(IDFT) are defined as:

1

0

1

0

() () , 0,1, , 1 (8)

1
() () , 0,1, , 1 (9)

N
nk

N
n

N
nk

N
k

X k x n W k N

x n X k W n N
N










  

  









The twiddle factor exp(2)NW j N  denotes

the N-point primitive root of unity. The IDFT can be
rewritten as:

*1
*

0

1
() () , 0,1, , 1 (10)

N
nk

N
k

x n X k W n N
N





 
   

 
 

(8) and (10) have the same twiddle factors and
the similar mathematical expression, so DFT and
IDFT can be performed by same hardware. 2N
complex multiplications need to calculate in (8) or
(10), so a straightforward hardware implementation
of the DFT algorithm is obviously impractical.
Therefore, the FFT was developed to efficiently
speed up DFT computation time and significantly
reduce the amount of multiplications.

FFT was proposed by Cooley and Tukey [8] in
1965. FFT is an efficient approach for reducing the
computational complexity of DFT. FFT has many
flexible algorithms. Generally, FFT treats input
sequence by using decimation-in-frequency (DIF) or
decimation-in-time (DIT) decomposition to build a
regular SFG. Radix-2 DIF FFT is chosen in this
paper because we analyze the input sequence in
natural ordering in most cases.

2.3 IEEE Standard for Binary Single
Precision Floating-Point Arithmetic
An IEEE binary SPFP number [24] is a 32-bit word
with 1 bit for sign “s”, 8 bits for exponent “e” with
127 bias and 23 bits for mantissa “m” with true
binary notation. A normal SPFP number is
represented in

(1) 2 (1), (0 255) (11)s en m e      

Denormalized SPFP numbers are too small. In
most practical calculation they do not contribute to
the final result, so we treat denormalized numbers as
zero, with a sign “s” taken from them. Some special
SPFP numbers are depicted as follows.
1. 255, 0e m  , not a number (NAN).
2. 255, 0e m  , infinity depending on “s”.

3. 0, 0e m  , zero depending on “s”.
4. 0, 0e m  , denormalized operands.

SPFP arithmetic operation has some rounding
modes. Truncation and convergent rounding are two
mostly used modes for keep the result precision. In
hardware implementation, truncation is the easiest
method for hardware implementation. The pipelined
butterfly PE of the proposed DHT processor use
truncation to reduce data path width.

3 The Proposed DHT SFG and
associated Architecture

3.1 The Proposed DHT SFG
Bit reversed sorting is a complicated operation in
radix-2 FFT algorithm. FFT and IFFT are calculated
one time in respective in the DHT computation. A
popular DHT SFG is depicted in Fig. 1. In this
figure, the input and the output of the complex
multiplication module are both bit reversed order, so
no bit reversed sorting is used. The main
disadvantage is that Fig. 1 uses both DIF and DIT
decomposition. DIF PE and DIT PE have different
arithmetic operation sequence, so the hardware
implementation using Fig. 1 may wastes hardware
resource.

As an example, a novel 16-point DHT SFG is
proposed in Fig. 2. FFT and IFFT in this figure are
both using radix-2 FFT with DIF decomposition.
Input and output of the complex multiplication
module are both bit reversed order. FFT and IFFT in
Fig. 2 share one pipelined DIF butterfly PE while
avoiding bit reversed sorting in DHT computation.
Another advantage in Fig. 2 is that the input and
output sequence are both in natural order.

3.2 Optimization of Complex Multiplications
in the Frequency Domain
Complex multiplication in the frequency domain is
expressed in (6) and (7). It is evident that the DHT
can be calculated easily in the frequency domain as
multiplications with +j, -j or 0. Actually, complex
multiplication is implemented by some easily
circuits without multipliers in this paper.

Fig.1. 16-point DHT SFG by a DIF FFT and a DIT
IFFT

WSEAS TRANSACTIONS on COMMUNICATIONS Wang Xu, Zhang Yan, Wang Fei, Ding Shunying

E-ISSN: 2224-2864 397 Issue 11, Volume 11, November 2012

Decrease iterations in Fig. 2 can decrease the
DHT computation latency significantly. In the
figure, the last FFT iteration and complex
multiplications is calculated without multiplications.
We merge the two iterations into the first IFFT
iteration. This skill is shown in Fig. 3. Assume that
the inputs of one butterfly in the last FFT iteration
are (ar, ai) and (br, bi), so the butterfly result is
(ar+br, ai+bi) and (ar-br, ai-bi). Complex
multiplications in the frequency domain are replaced
with swapping and conjugation operations. The
result of this step is (ai+bi, -ar-br) and (bi-ai, ar-br).
Two numbers are conjugated to (ai+bi, ar+br) and
(bi-ai, br-ar). Then the butterly in the first IFFT
iteration treats (ai+bi, ar+br) and (bi-ai, br-ar) as
the inputs and this butterfly results are (2bi, 2br) and
(2ai, 2ar). The results can write as (bi, br) and (ai,
ar) also. A series of complicated operations
changing (ar, ai) and (br, bi) to (bi, br) and (ai, ar)
are optimized to swapping operations easily. The
optimization of complex multiplications in the
frequency domain decreases two iterations in the
DHT SFG shown in Fig. 2. We call this
optimization as swapping operation. If the DHT
point size is 2n , in other words the DHT SFG has n

iterations. The proposed processor performs n-2
iterations after the DHT SFG optimization.

The last IFFT iteration doesn’t contain any
complex multiplication. The DHT results can be
stored in memory using bypass circuits.

3.3 The Proposed DHT Architecture
The architecture of the proposed DHT processor is
shown in Fig. 4. It mainly employs one single port
ROM, two random access memories (RAM), three
crossbar switches, one pipelined butterfly PE and
one memory address controller. Two RAMs are
used to read and write data and ROM is used for
twiddle factors accessing. The width of two RAMs
and ROM are both 64-bit so as to access the real and
image part of complex data simultaneously. The
RAM is dual-port, one port is used to read data and

2
16W

1
16W

3
16W

j

5
16W

6
16W

7
16W

2
16W

j

6
16W

2
16W

j

6
16W

j

j

j

j

(1)jX

0 (0)X

(2)jX

(3)jX

(4)jX

(5)jX

(6)jX

(7)jX

(9)jX

0 (8)X

(10)jX

(11)jX

(12)jX

(13)jX

(14)jX

(15)jX

ˆ(1)x

ˆ (0)x

ˆ(2)x

ˆ(3)x

ˆ(5)x

ˆ(4)x

ˆ (6)x

ˆ(7)x

ˆ(9)x

ˆ(8)x

ˆ(10)x

ˆ(11)x

ˆ(13)x

ˆ(12)x

ˆ(14)x

ˆ(15)x

j

2
16W

6
16W

1
16W

5
16W

3
16W

7
16W

j

j

2
16W

2
16W

6
16W

6
16W

j

j

j

j

Fig.2. The 16-point DHT SFG by two radix-2 DIF FFTs

s t
parity

Controller

S
w

it
ch

 0

S
w

it
ch

 1

ParityAddress generator

RAM 1
Parity = 1
1 2 4 7 8
11 13 14

RAM 0
Parity = 0
0 3 5 6 9
10 12 15

Switch 2

din

dout

B
ut

te
rf

ly
 P

E

ROM

start
pow s

Fig.4. The architecture of proposed DHT processor
Fig.3. Optimization of complex multiplication in the

frequency domain

WSEAS TRANSACTIONS on COMMUNICATIONS Wang Xu, Zhang Yan, Wang Fei, Ding Shunying

E-ISSN: 2224-2864 398 Issue 11, Volume 11, November 2012

another is used to write data. This method avoids
memory access conflict when the pipelined butterfly
PE working in one stage iteration of the DHT SFG.
The controller includes an address generator and a
parity module. The parity of element X is defined as
zero if the number of ones in the binary
representation of X is even and one otherwise. “din”
is the data load port and “dout” is the data unload
port. The strobe signal “start” notices the processor
to work after memory initiation. The point size of
DHT computation is “2^pow” determined by the
signal “pow”. The address generator makes an
address pair (,)s t per clock cycle. The signal
“parity” generated by the parity module controls
memories accessing, three crossbar switches and the
multiplexer connected to unload port. The memory
initial rule is that the data is loaded to RAM0 with
“parity” is zero and to RAM1 with “parity” is one.
The signal “parity” also means swapping data
before and after the butterfly PE working. Because
the data read from RAM0 and RAM1 may be have a
reversed order comparing to the DHT SFG in Fig. 2.
Data read from memory is delivered to the butterfly
PE every clock cycle to keep the pipeline working
in one stage iteration in the DHT SFG. After
computation finished, result in two memories is
unloaded in the “parity” control.

3.4 Architecture of the Memory Address
Controller
The DHT processor supports variable point sizes.
The internal memory address controller configures
the processor according to the point size N. The
controller mainly includes a memory address
generator and a parity module. The memory address
generator makes 2N different address pairs in one
stage iteration according to the point size N. The
parity module controls all crossbar switches.

Cohen [25] proposed a simple way to control
memory address. Let an address pair (,)s t represent a
DIF butterfly PE operation.

() (() ()) (12)

() (() ()) (13)

X s X s X t W

X t X s X t W

  
  

The value of the address pair in the ith butterfly
in the jth iteration is defined as

2

(,) (14)

(/ 2,) (15)

log , 0,1, (/ 2 1), 0,1, (1)

n

n

s rotate i j

t rotate i N j

n N i N j n


 
     

Where N is the point size and (,)nrotate i j is the
value of i cycling rotated right, by j bits, within n
bits, e.g., 4 (1,1) 8rotate  and 4 (9,2) 6rotate  . The

parity of i is defined as zero if the number of ones in
the binary representation of i is even and one
otherwise. Pease [26] proved that s and t in the
address pair have different parity.

The architecture of memory controller is shown
in Fig. 5. The controller mainly includes three
counters, two cycling shifters and one parity module.
Continuous numbers from 0 to 2 1N  are generated
by the counter “Cnt0”. Continuous numbers from

2 1N  to 1N  are generated by the counter “Cnt1”.
Two numbers generated by “Cnt0” and “Cnt1” are
cycling rotated right according to the value of

TABLE 1
16-POINT DHT MEMORY ADDRESS PAIRS

Iterations Memory address pairs (,)s t

FFT 0 (0, 8), (1, 9), (2, 10), (3, 11), (4, 12), (5,
13), (6, 14), (7, 15)

FFT 1 (0, 4), (8, 12), (1, 5), (9, 13), (2, 6), (10,
14), (3, 7), (11, 15)

FFT 2 (0, 2), (4, 6), (8, 10), (12, 14), (1, 3), (5,
7), (9, 11), (13, 15)

FFT 3/
IFFT 0

(0, 1), (2, 3), (4, 5), (6, 7), (8, 9), (10,
11), (12, 13), (14, 15)

IFFT 1 (0, 2), (4, 6), (8, 10), (12, 14), (1, 3), (5,
7), (9, 11), (13, 15)

IFFT 2 (0, 4), (8, 12), (1, 5), (9, 13), (2, 6), (10,
14), (3, 7), (11, 15)

IFFT 3 (0, 8), (1, 9), (2, 10), (3, 11), (4, 12), (5,
13), (6, 14), (7, 15)

S
w

itch2

Fig.5. The architecture of memory address generator
and parity module

WSEAS TRANSACTIONS on COMMUNICATIONS Wang Xu, Zhang Yan, Wang Fei, Ding Shunying

E-ISSN: 2224-2864 399 Issue 11, Volume 11, November 2012

counter “Cnt2”, then address pair (,)s t is valid. This
address pair will be swapped by crossbar switch 2 if
the signal “parity” is one. After swapping operation,
the address pair is sent to RAM0 and RAM1 in
respective. Memory address pairs of a 16-point
DHT are show in Table 1. As an example, the
address generator makes an address pair (8,12) in
FFT iteration 1 where the parity of “s” is one, so the
address pair is swapped to (12,8), and then address
12 is send to RAM0 and address 8 is send to RAM1.
The memory address generator uses one clock cycle
to set initial values and one clock cycle to make a
rotated address pair. The memory address generator
costs two clock cycles before the DHT computation.

3.5 Twiddle Factors Symmetry
Twiddle factors have a symmetric property. In the
second quadrant, twiddle factor multiplications with
a complex number can be written as:

(4)() (), 4 2 (16)k k N
N NW a jb W b ja N k N    
Twiddle factors is located in the first and the

second quadrant. Given the (16), twiddle factors in
the second quadrant can be obtained by a
combination of twiddle factors in the first quadrant.
In other words, arbitrary twiddle factors used in
DHT can utilize this operation type to derive the
wanted value, thus can significantly shorten the size
of ROM used to store the twiddle factors. Based on
the symmetric property, the ROM size for twiddle
factors will be reduced half.

3.6 The Pipelined butterfly PE architecture
We design a pipelined butterfly PE to improve the
performance of the DHT processor. The VLSI
architecture of the butterfly PE shown in Fig. 6 is
composed of six adders, four multipliers, three XOR
gates, eight multiplexers and one crossbar switch. In
the architecture, {ar, ai} and {br, bi} are data read

from RAM0 and RAM1. {ar’, ai’} and {br’, bi’}
are data written to RAM0 and RAM1. {cosa, sina}
are data read from twiddle factors ROM. The signal
“dht_zero” is active means selecting 0 when the
address pair is (0, 2)N . The signal “dht_en” is
active in the first IFFT iteration. The signal
“sym_en” is active when twiddle factors are in the
second quadrant. The signal “wr_conj” is active
when writing data into memories in the last IFFT
iteration.

Let an N-point DHT be processed by the
pipelined butterfly PE. The DHT SFG shown in the
Fig. 2 is divided into three steps in Fig. 3. FFT is the
first step. In Fig. 5, signal “dht_zero”, “dht_en” and
“wr_conj” are all disable, so the butterfly PE
becomes a radix-2 DIF butterfly. Swapping is the
second step, which includes the last FFT iteration,
complex multiplication and the first IFFT iteration.
In this step, complex multiplication is active, so
signal “dht_en” is enabled. The signal “dht_zero” is
active also when the address pair is (0, 2)N in the
first IFFT iteration. This signal sets the complex
multiplication results to zero. The third step is
executing other IFFT iterations. The signal wr_conj
is active when writing data in the last IFFT iteration.

3.7 The SPFP Adder Architecture
Floating-point addition is a fundamental component
of DSP processors and systems. Various algorithms
and design approaches [27-33] have been proposed
to increase the performance of floating-point adder.

A five stage pipelined SPFP adder is designed in
[28] which has an efficient pipeline division. But the
clock rate of this adder is low because of its long
critical path. The critical path in the processor is
located in the SPFP multiplier, the five stage
pipelined SPFP adder is not suited. We proposed a
seven stage pipelined SPFP adder architecture
shown in Fig. 7. Assume that a SPFP addition starts

I0

-1

R0

0
1

0
1

×

×

×

×

cosa

sina

cosa

sina

+

-

R1

×

-1
s1

+

-

+

-

0
1

ar

bi

0
1

ai

br

0
1

br

ai

0
1

bi

ar

×
-1

× I1

s0

Fig.6. The pipelined butterfly PE architecture

WSEAS TRANSACTIONS on COMMUNICATIONS Wang Xu, Zhang Yan, Wang Fei, Ding Shunying

E-ISSN: 2224-2864 400 Issue 11, Volume 11, November 2012

in clock cycle i. Then two inputs are loaded from
memory and check whether they are denormalized.
Denormalized inputs will be replaced with zero. The
exponents are subtracted from one another to get the
absolute difference and identify the larger exponent.
The fraction parts of two inputs are also changed to
2’s complement code representation. In cycle 1i  ,
the mantissa with smaller exponent is right-shifted
to ensure that two inputs have the same exponential.
The mantissa with smaller exponent is extended by
3 bits to be used later for rounding. In cycle 2i  ,
two mantissas are added using a 2’s complement
adder. In cycle 3i  , the sum of two mantissas is
changed to true code representation. In cycle 4i  ,
detecting the leading number of zeros before the
first 1 in the sum, this step is done by the module
known as the leading-one detector (LOD). Using
this value, the result is left-shifted by a left shifter in
cycle 5i  . Normalization and truncation is finished
at cycle 6i  . The latency of the proposed pipelined
SPFP adder is 7addT  .

3.8 The SPFP Multiplier Architecture
The pipelined architecture of the SPFP multiplier is
shown in Fig. 8. The first step, not shown in the
figure, is preprocessing. This step includes replacing
denormalized operands with zero, then setting the
result to zero if one of the two operands is zero or to
infinity if one of the two operands is infinity and
another is nonzero. Next, we get the exponent result
by adding the exponent of the two operands and
then subtracting the bias from their sum. The
mantissa’s product is performed by a fixed point
multiplier at the same time. We exclusive or (XOR)
the sign of the two operands to get the sign result of
the product.

The fixed point multiplier is responsible for
multiplying the mantissas and placing the decimal
point in the product. Serial, booth and carry save are
general multiplier architectures in hardware design.
Serial multiplier has a high clock rate, but it has a
large circuit area and long latency for computation.
4-bit booth multiplier saves half of the clock cycles
compared with serial multiplier, but the latency is
not the minimal. The array multiplier has a
compacted structure and a very efficient layout. But
it is hard to determine the propagation delay
straightforward due to the array organization. Three
24x24 bit multiplier architectures are implemented
and their performance comparison is listed in Table

Fig.7. The architecture of SPFP adder

-127

sign

S Exp

Adder

S Exp Mantissa

XOR

1 18 8

Adder

8
9

10

Mantissa

1

23 23

48-bit
Multiplier

48

Normalize & Truncation
31

Fig.8. The architecture of SPFP multiplier

HA HA HA HA

FAFAFAHA

FAFAFAHA

HAFAFAHA

HA: Half adder
FA: Full adder

...

...

...

...

Fig.9. The 24x4 bit carry save multiplier
architecture.

WSEAS TRANSACTIONS on COMMUNICATIONS Wang Xu, Zhang Yan, Wang Fei, Ding Shunying

E-ISSN: 2224-2864 401 Issue 11, Volume 11, November 2012

II. We chose carry save architecture for designing
24x24 bit multiplier because it has a moderate
latency with comparatively small area. The carry
bits are passed diagonally downwards in carry save
multiplier. Partial products are made by anding the
inputs together and passing them to the appropriate
adder.

The number of adders (HA and FA) in each stage
is equal to the mantissa’s length minus one. For
example, a 24x4 carry save multiplier is shown in
Fig. 9 and it has four stages: The first stage consists
of three HAs. The second and the third stages
consist of three FAs respectively. The last stage
consists of one HA and two FAs. The latency of the
proposed pipelined SPFP multiplier is 7mulT  .

4 Implementation and Performance
Analysis

4.1 Implementation

The number of clock cycles by itself is not an
accurate measure of performance of the system,
since the clock rates may vary considerably. So an
implementation is carried out to verify the
performance of the system.

The circuits are modelled using Verilog HDL.
Synthesis uses Xilinx ISE 13.1. The proposed DHT
processor is implemented in Xilinx XC5VLX50T
with speed grade -2. The design doesn’t include any
Xilinx DSP slices. The pipeline technique is used in
the DHT processor in order to decrease latency,

keep the processor working at a higher clock rate,
and increase the processor’s throughput. The
memory address bus width is 16, so the maximum
point size the proposed DHT processor supports is
1024.

4.2 Comparison
In Table 3, Some DSP processors are compared
with the proposed one. The hardware in [33] has the
minimal latency, but this architecture has poor clock
frequency and memory utilization. The architecture
includes four memories, and their depth equals to
the DHT point size. The architecture in [34] uses
one true dual port RAM with depth equals to the
DHT point size. One port of the RAM is used for
reading and another for writing, so the latency of
one time iteration of DHT equals to the DHT point
size. In [35] the PE is not working in pipelined
mode, so the latency is longer than our work. In our
work, The latency of pipelined floating-point adder
and multiplier, in our design, are 7addT  and

7mulT  . The latency of the pipelined butterfly PE is

2 21add mulT T  . The address generator needs 2
clock cycles to make an address pair before a new
iteration in DHT SFG. When sampling length is
1024, the proposed DHT SFG has 19 iterations after
optimization. In one stage iteration, all data read to
the SPFP PE requires 512 clock cycles. The last
IFFT iteration has no multiplications. So the latency
in our proposed DHT processor
is (21 2 512) 19 10151mul addT T      . In Table 3,
our work has the minimal latency for DHT
computation with point size equals to 1024.

5 Conclusion
A configurable SPFP DHT processor is proposed to
accelerate the calculation of filter in Katsevich
algorithm. The processor is of memory based
architecture with one pipelined butterfly PE and
supports variable point sizes from 8 to 1024. The
DHT processor is controlled by the address

TABLE 2
PERFORMANCE COMPARISON OF DIFFERENT

MULTIPLIER ARCHITECTURES
Designs Clock rate

(MHz)
Latency LUTs REGs

Serial 367.834 26 1213 627
4-bit booth 348.372 14 910 524
Carry save 334.316 8 867 476

TABLE 3
PERFORMANCE COMPARISON OF DIFFERENT MULTIPLIER ARCHITECTURES

Designs Point
sizes

Clock
rate
(MHz)

FFT
latency

FFT
time
(us)

DHT
latency

Discrete
HT
time (us)

REGs LUTs DSPs FPGA

[33] FFT 1024 150 5220 34.8 10752 70.2 - - - XC2V1000-6
[34] Altera 1024 185 10630 57.45 21261 114.92 - - - Altera
[35] Xilinx 1024 374 9427 25.20 18855 50.414 1987 2028 6 XC5VLX50T-2
Our work 1024 335 5336 15.92 10151 30.30 5368 10118 0 XC5VLX50T-2

WSEAS TRANSACTIONS on COMMUNICATIONS Wang Xu, Zhang Yan, Wang Fei, Ding Shunying

E-ISSN: 2224-2864 402 Issue 11, Volume 11, November 2012

generator. According to the point size, the address
generator yields one memory address pair per clock
cycle to keep the processor accessing memories
successively. The DHT is calculated easily via
complex multiplications in the frequency domain.
Two FFTs are required in the entire process. The
radix-2 FFT algorithm with DIF decomposition is
utilized in the design to construct an efficiently SFG
for DHT calculation. Arithmetic calculations, in the
last FFT iteration, complex multiplications and the
first IFFT iteration are replaced with conjugation
and swapping operations, so two iterations are saved
in the DHT SFG. Data are loaded and unloaded
simultaneously after one frame data calculation is
completed. The symmetric property of twiddle
factors is utilized to decrease half size of the ROM.
Truncation is used in the design to reduce data path
width. The proposed DHT processor is written in
Verilog HDL, so it is easy for ASIC implementation.
Compared with previous works, the performance
analysis shows that the proposed DHT processor has
minimum clock latency.

References:
[1] A. Katsevich, Analysis of an exact inversion

formula for spiral cone-beam CT, Physics in
Medicine and Biology, Vol.47, No.15, 2002, pp.
2583-2598.

[2] A. Katsevich. Theoretically exact filtered
backprojection-type inversion algorithm for
spiral CT, SIAM Journal of Applied
Mathematics, Vol.62, No.6, 2002, pp2012-
2026.

[3] A. Katsevich, An improved exact filtered
backprojection algorithm for spiral computed
tomography, Advances in Applied Mathematics,
Vol.32, No.4, 2004, pp.681-697.

[4] S.C. Kak, The discrete Hilbert transform, in
Proc. IEEE, Vol.58, 1970, pp.585-586.

[5] V. Cizek, Discrete Hilbert transform, IEEE
Transactions on Audio and electroacoustics,
Vol.18, No.4, 1970, pp.340-343.

[6] A.V. Oppenheim, R.W. Schafer, Discrete time
signal processing, Prentice Hall, 1989, pp.775-
810.

[7] R.G. Lyons, Understanding digital signal
processing, Prentice Hall, 2005, pp.362-364

[8] J.W. Cooley, J.W. Tukey, An algorithm for the
machine calculation of complexes Fourier
series, Mathematics of Computation, Vol.19,
No.90, 1965, pp.297-301.

[9] S. Winograd, On computing the DFT,
Mathematics of Computation, Vol.32, No.141,
1986, pp.175-199.

[10] D. Kolba, T. Parks, A prime factor algorithm
using high-speed convolution, IEEE Trans.
Acoustics, Speech Signal Process, Vol.25, No.4,
1977, pp.281-294.

[11] S.C. Pei, S.B Jaw. Computation of the discrete
Hilbert transform through fast Hartley
transform, IEEE Trans. Circuits and Systems,
Vol.36, No.9, 1989, pp.1251-1252.

[12] B. Kumar, S.C Dutta Roy, Design of efficient
FIR digital differentiators and Hilbert
transformers for midband frequency ranges,
International Journal of Circuit Theory and
Application, Vol.17, No.4, 1989, pp.483-488.

[13] S.K. Padala, K.M.M Prabhu, Systolic arrays for
the discrete Hilbert transform, in Proc. IEEE
CDS, Vol.144, No.5, 1997, pp.259-264.

[14] S. He, M. Torkelson, Designing pipeline FFT
processor for OFDM (de)modulation, in Proc.
IEEE ISSSE, 1998, pp.257-262.

[15] H.L. Groginsky and G.A. Works, “A pipeline
fast Fourier transform,” IEEE Trans.
Computers, Vol.19, No.11, 1970, pp.1015-
1019.

[16] H. Shousheng, Design and implementation of a
1024-point pipeline FFT processor, in Proc.
IEEE Custom Integrated Circuits Conference,
1998, pp.131-134.

[17] K. Maharatna, E. Grass, U. Jagdhold, A 64-
Point fourier transform chip for high-speed
wireless LAN application using OFDM, IEEE
J. Solid-State Circuits, Vol.39, no.3, 2004,
pp.484-493.

[18] Y.T. Lin, P.Y. Tsai and T.D. Chiueh, Low-
power variable-length fast Fourier transform
processor, in Proc. IEEE Computers and
Digital Techniques, Vol.152, No.4, 2005,
pp.499-506.

[19] S. Minhyeok, L. Hanho, A high-speed Four-
parallel radix-24 FFT/IFFT processor for UWB
applications, in Proc. IEEE ISCAS, 2008,
pp.960-963.

[20] B.M. Bass, A low-power, high performance
1024-point FFT processor, IEEE J. Solid-State
Circuits, Vol.34, No.3, 1999, pp.380-387.

[21] M. Hasan, T.Arslan, J.S. Thompson, A novel
coefficient ordering based low power pipelined
radix-4 FFT processor for wireless LAN
applications, IEEE Trans. Consumer
Electronics, Vol.49, No.1, 2003, pp.128-134.

[22] E.H. Wold, A.M. Despain, Pipeline and
parallel-pipeline FFT processors for VLSI
implementation, IEEE Trans. Computer,
Vol.33, No.5, 1984, pp.414-426.

[23] Y. Chu, L. Yiting, Y. Maohsu, H. Paoann, et al,
A low-power 64-point pipeline FFT/IFFT

WSEAS TRANSACTIONS on COMMUNICATIONS Wang Xu, Zhang Yan, Wang Fei, Ding Shunying

E-ISSN: 2224-2864 403 Issue 11, Volume 11, November 2012

processor, IEEE Trans. Consumer Electronics,
Vol.57, No.1, 2011, pp.40-45.

[24] IEEE standard for binary floating-point
arithmetic, IEEE Standard 754-1985, 1985

[25] D. Cohen, Simplified control of FFT hardware,
IEEE Trans. Acoustics, Speech and Signal
Processing, Vol.24, No.6, 1976, pp.577-579.

[26] M.C. Pease, Organization of large scale Fourier
processors, Journal of the ACM, Vol.16, No.2,
1969, pp.474-482.

[27] A.M. Nielsen, D.W. Matula, C.N. Lyu. An
IEEE compliant floating-point adder that
conforms with the pipelined packet-forwarding
paradigm, IEEE Trans. Computers, Vol.49,
No.1, 2000, pp. 33-47.

[28] A. Malik, C. Dongdong, C. Younhee, et al,
Design tradeoff analysis of floating-point
adders in FPGAs, IEEE Trans. Electrical and
Computer Engineering, Vol.33, No.3, 2008,
pp.169-175.

[29] C. Tsen, Hardware design of a binary integer
decimal-based floating-point adder, in Proc.
IEEE Computer Design, 2007, pp.288-295.

[30] D. Tan C.E. Lemonds, M.J. Schulte. Low-
power multiple-precision iterative floating-
point multiplier with SIMD support, IEEE
Trans. Computers, Vol.58, No.2, 2009, pp.175-
187.

[31] S.V. Siddamal, R.M. Banakar, B.C. Jinaga,
Design of high-speed floating point multiplier,
Electronic Design, Test and Applications, 2008,
pp.285-289.

[32] L.S.A. Hamid, K. Shehata, H. El-Ghitani, et al,
Design of generic floating point multiplier and
adder/subtractor units, in Proc. IEEE UKSim,
2010, pp.615-618.

[33] M. Shengmei, Y. Xiaodong, Design of a high-
speed FPGA-based 32-bit floating-point FFT
processor, in Proc. IEEE SNPD, 2007, pp. 84-
87.

[34] Altera Inc. [Online]. Available:
http://www.altera.com.cn/literature/wp/wp_fft_
radix2.pdf.

[35] Xilinx Inc. [Online]. Available:
http://www.xilinx.com/support/documentation/i
p_documentation/xfft_ds260.pdf

Wang Xu, born in 1980. Received
the M.A’s. degrees in
microelectronics from the
Shenzhen Graduate School, Harbin
Institute of Technology, Shenzhen,
China, in 2007. Since 2008, he has
been a PhD candidate in

microelectronics. His main research interests
include image processing and embedded DSP
processor design.

Zhang Yan, born in 1969. He has
been professor of the Shenzhen
Graduate School, Harbin Institute
of Technology since 2002. His
main research interests are
application specific instruction set
processor design, including medical

image processing chips and wireless communication
baseband chip.

Wang Fei, got his Bachelor and
Master degree on Automatic
Control from Shandong University
in 1989, and Beijing University of
Aeronautics in 1994 respectively,
and Ph.D. on Computer

Engineering from Wright State University, OH,
USA in 2006. He is currently a faculty with Harbin
Institute of Technology Shenzhen Graduate School,
China, and his research interest focuses on
embedded system, CAD algorithms of VLSI,
computer vision and so on.

Ding shunying, born in 1988, she
is a BSc candidate in
microelectronics in the Shenzhen
Graduate School, Harbin Institute
of Technology. Her main research
interest is image processing and

FFT acceleration by Intel SSE and NVidia CUDA.

WSEAS TRANSACTIONS on COMMUNICATIONS Wang Xu, Zhang Yan, Wang Fei, Ding Shunying

E-ISSN: 2224-2864 404 Issue 11, Volume 11, November 2012

